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ABSTRACT

A gradual alteration in the mechanisms underlying reproduc-
tion and fertility characterizes the aging process in human
females. These changes culminate in menopause, conventionally
defined as a cessation of menstrual cycles that marks the end of
reproductive capacity. In fact, a central and defining event in
menopause is the discontinuation of ovulation, which is
correlated with a number of structural and functional changes
in the reproductive axis. Despite several decades of research, a
degree of uncertainty remains as to whether nonhuman primates
undergo menopause, and whether they are suitable models of
human reproductive senescence. We review some of the
controversies that have clouded our understanding of reproduc-
tive aging in nonhuman primates, including issues of definition,
timing, comparability of data from wild versus captive popula-
tions, and cross-species comparisons. The existing data support
the view that menopause occurs in a number of primate species
and is not unique to humans.

aging, ape, climacteric, evolution, hormones, human,
menopause, menstrual cycle, monkey, nonhuman primates,
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INTRODUCTION

As a natural consequence of aging, human females
gradually lose the ability to reproduce. This loss in fertility is
signaled by a disruption in the normal cyclicity of menstrual
periods and eventually the complete cessation of ovulation and
menstrual bleeding. The functional and structural changes in
the hypothalamic-pituitary-ovarian axis that underlie meno-
pause have been the subject of considerable research [1–4]. For
example, in an early study of hormonal changes across the
human life span, Sherman and Korenman [5] reported that as
females age, intermenstrual intervals increase, a phenomenon
thought to result directly from lower serum estradiol (E

2
) levels

and elevated follicle-stimulating hormone (FSH) concentra-
tions. In addition to endocrine changes, the senescent ovary

shrinks in size [6, 7], undergoes vascular changes [8, 9],
decreases the rate of folliculogenesis [10], reorganizes
morphologically [6], and increases androgen output [11–13].
These alterations in reproductive parameters have been linked
to other markers of aging, including diminished bone density
[14–16], cognition [17–21], and cardiovascular health [22, 23].
The physiological and behavioral consequences of aging,
particularly in postmenopausal females, are far reaching and
significant, and as a result, much effort has been devoted to
achieving a better understanding of the menopausal process.

Because of their biological similarities to humans, nonhu-
man primates have been studied in an attempt to find a suitable
model for menopause. One impediment to this research has
been a paucity of normal aged primates for study. In addition,
uncertainties about the life span of various primate species,
definitions used to establish the markers of reproductive aging,
measurements used to verify menopause, the comparability of
data derived from captive versus free-ranging animals, as well
as the similarities and differences among species, have
hindered progress in our understanding of the biological
mechanisms underlying reproductive senescence in primates.
The resulting confusion has led to several assertions that
menopause is uniquely human [24–26]. Here, we attempt to
dispel some of the uncertainties surrounding the comparative
analysis of menopause in primates by examining the
commonalities and differences in established markers of
menopause among primate species. We conclude that meno-
pause is not unique to humans.

DEFINITION OF MENOPAUSE

Perhaps the most salient source of misunderstanding in
comparative studies is the definition of menopause, which
originated to describe obvious changes that occur in humans.
The Oxford English Dictionary defines menopause as the
‘‘permanent cessation of menstruation; the period of a woman’s
life when this occurs...’’ [27]. This definition draws heavily
from the historical characterization of menopause almost
exclusively in terms of the termination of menstruation (e.g.,
‘‘12 months of amenorrhea following the final menstrual
period’’ [28]). From a physiological perspective, however,
menopause can be defined as ‘‘the cessation of ovarian steroid
hormone secretion as a result of the depletion of oocytes and
surrounding follicular apparatus’’ [29]. By the first two
definitions, only those species that menstruate—that is, exhibit
cyclic vaginal discharge of blood—can experience menopause.
The third definition, however, emphasizes the pivotal role of
ovarian changes in the termination of reproductive viability, of
which the discontinuation of menstruation is only one
component. We agree with vom Saal and Finch [30] that an
‘‘underlying and unifying framework’’ for understanding
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female reproductive senescence is needed, and argue that a
rigorous definition of menopause, focusing on its essential
physiological features, will permit a more meaningful compar-
ison of reproductive senescence across species.

Menstrual bleeding is an easily observable marker of the
underlying ovarian and neuroendocrine phenomena that govern
reproductive viability in humans (see vom Saal and Finch
[30]). However, not all primates exhibit regular patterns of
menstrual bleeding [31, 32], and menstruation is only one of
many relevant biological events that define reproductive
potential. A definition of menopause that encompasses
hormonal changes and their anatomical substrates as key
determinants of the age-associated loss of fertility provides a
more fundamental view of reproductive senescence, inasmuch
as studies of primates strongly suggest that ovarian exhaustion
is central to this process [30]. The decline of ovarian function is
not the only cause of hormonal change, however, and there is
evidence in women that other age-associated neuroendocrine
alterations may occur independently of ovarian influences [2].
Since not all primates menstruate, and because menstruation is
only one facet of the complex physiological mechanism that
governs reproductive cyclicity, we believe that a meaningful
comparative analysis of female reproductive senescence should
focus on the anatomical, physiological and biochemical
changes that are essential to the cessation of ovarian cyclicity,
regardless of whether menstrual bleeding is present. For these
reasons, in the following comparative analysis, we define
menopause in primates as the permanent, nonpathologic, age-
associated cessation of ovulation. To infer this event, a variety
of biological parameters, such as menstrual bleeding, perineal
swelling, follicular depletion, and hormonal changes, can be
useful. However, it should be emphasized that a change in any
one of these phenomena cannot be considered an exclusionary
criterion for the underlying physiological event.

TIMING OF MENOPAUSE IN THE LIFE SPAN

An important issue regarding comparative research on
menopause involves the timing of menopause relative to
average (mean) and maximum life span. Humans may be
unique among primates in that the females have a long
postreproductive survival potential [33]. The mean age at
menopause for humans is approximately 50 yr [34–36]; if we
consider that the maximum life span for humans is about 122
yr, a human female could spend nearly 60% of her life in a
postreproductive state. This issue arises in the debate over
whether nonhuman primates experience menopause, and if so,
when this event occurs relative to death; one of the prevailing
arguments against accepting nonhuman primates as models for
human menopause emphasizes this very point [37]. For
example, rhesus monkeys (Macaca mulatta) cease menstruat-
ing at approximately 25 yr of age [38–41]. In captivity, the

known maximum life span of rhesus monkeys is around 40 yr
[42, 43]. Hence, at most, about 40% of the maximum life span
of rhesus monkeys is postreproductive.

It can be difficult to compare life span across species due to
differences in living environments, medical care, etc., but
another potentially useful measure of longevity is the average
life span (usually the mean or median life expectancy). Table 1
depicts current estimates of average (mean) and maximum life
span for humans and a selection of nonhuman primates, as well
as the approximate age of menopause and the proportion of the
average and maximum life spans spent in a nonreproductive
state. Species differences in these biological markers are
evident, even among the great apes. A schematic representation
of interspecies variability in key reproductive parameters is
depicted in Figure 1. This diagram underscores the relatively
small proportion of the known life span during which humans
are reproductively viable compared with either chimpanzees or
macaques. These cross-species comparisons provide a concep-
tual framework for understanding the timing of reproductive
senescence in primates, and they support the view that humans
have a uniquely extended postmenopausal life expectancy.
Postreproductive survival, however, is a separate issue from the
existence of menopause per se, as we discuss below in the
section on operational definitions.

The timing of the transition into menopause, known as
perimenopause, also is highly variable in human females. Age
at onset of perimenopause in humans ranges from the mid-30s
to the early 50s [12, 35, 61–64]. This wide variability in timing
has hindered efforts to understand the mechanisms that control
the onset of menopause in humans. In nonhuman primates, the
difficulties may be even more pronounced, since reproductive
cessation occurs so late in the life span that relatively few

TABLE 1. Average (mean) life span (LS), maximum LS, average age at menopausal onset, and proportion of life spent in a nonreproductive state as a
function of currently known average or maximum life spans in a variety of primate species.

Species Average LS (yr) Maximum LS (yr) Menopause onset (yr)

Nonreproductive state

Average LS (%) Maximum LS (%)

Homo sapiens 80a 122b 50c 38 59
Pan spp. 40d 60e 35–50?f 0–8.8 16.7–42
Gorilla gorilla 35g 50h 40?i 0 20
Pongo spp. 30j 53k ? 0 ?
Papio spp. 30l 45m 26n 13 42
Macaca spp. 25o 40p 25q 0 38

a–q Reference number: a[44]; b[45]; c[35]; d[46]; e[46]; f[47–49]; g[50]; h[50]; i[51]; j[52]; k[53]; l[54]; m[55]; n[56]; o[42]; p[57]; q[40].

FIG. 1. Reproductive life span in female macaques (Macaca spp.),
chimpanzees (Pan troglodytes), and humans (Homo sapiens) depicting
approximate ages at puberty, menopause, and maximum life span. The
following numbers were used: macaque: 3.5 yr [58], 25 yr [42], 40 yr
[57]; chimpanzee: 8 yr [59], 50 yr [47], 60 yr [50]; and human: 12.5 yr
[60], 80 yr [44], 122 yr [45].

NONHUMAN PRIMATES AND MENOPAUSE 399



animals live to ages approaching the maximum. Despite these
obstacles, burgeoning data support the existence of a
perimenopausal state in nonhuman primates [37, 40, 41, 65,
66], a condition which, by definition, indicates a transitional
stage between fertility and age-associated infertility.

ASSESSING MENOPAUSE IN WILD VERSUS
CAPTIVE ANIMALS

The comparability of data derived from wild versus captive
animals is a recurrent issue in studies of nonhuman primates
[67]. Although important demographic, behavioral, and anthro-
pological information has emerged from field studies of free-
ranging nonhuman primates, data dealing with specific
physiological mechanisms that govern the timing of menopause
in the wild are understandably scarce. Anecdotal evidence
suggests the existence of menopause in wild primates [68–71],
but the difficulty in obtaining definitive data under the
challenging conditions imposed by naturalistic observation
diminishes the impact of these reports. Uncertainty about the
subjects’ ages (which are often estimated [53]) and the effects of
predation pressures [72], limited survivability [73, 74], infant
mortality [75], food availability and nutrition [76], and social

dynamics [77] are a few of the factors that might compromise
the investigation of menopause in free-ranging primates.
Because of these constraints, field observations of menopause
in nonhuman primates are perhaps best viewed as an important,
but limited, complement to data derived from captive animals.

OPERATIONAL DEFINITIONS OF MENOPAUSE FOR
COMPARATIVE ANALYSIS

Perhaps much of the misunderstanding of reproductive
senescence in nonhuman primates results from the broad array
of operational definitions for menopause (see Table 2 for a list
of criterion-based operational definitions). While each of the
parameters measured has merit as a potential marker of
reproductive senescence, a piecemeal approach to defining
menopause can often lead to contradictory claims, as illustrated
by research on captive chimpanzees. For example, Gould et al.
[47] measured urinary and serum hormones for 1 mo,
menstrual cycle length and perineal swelling for 12 mo, the
effects of a single GnRH challenge, and the status of ovarian
follicles in two common chimpanzees (Pan troglodytes) and
one bonobo (Pan paniscus) to provide the earliest evidence of
menopause in these species. Graham et al. [81] documented
reproductive capacity in chimpanzees throughout life using
conception rate, cycle frequency, and cycle length, based on
perineal swelling. These studies conclude that chimpanzees do
not undergo menopause until around the age of 50 yr. More
recently, however, Videan and colleagues [49] measured serum
luteinizing hormone (LH), FSH, and E

2
, sampled biannually, as

well as cycle length and perineal swelling, in 14 common
chimpanzees ranging in age from 31 to 50 yr. The authors
reported the cessation of perineal swelling in the oldest animals
(.44 yr) as well as endocrine profiles similar to those in
postmenopausal human females. They conclude that meno-
pause occurs at 35–40 yr of age in chimpanzees. When
menstrual cycle length, inferred from perineal swelling and
menstrual bleeding, is used exclusively as the dependent
variable for defining menopause in chimpanzees, however,
Lacreuse and colleagues found little evidence for full
menopause in chimpanzees in their 30s, 40s, and 50s, except
in one female who continued to cycle until 57 yr of age, 2 yr
prior to her death [48].

This definitional dilemma was recently illustrated in a study
that dichotomized reproductive aging in chimpanzees using
separate but interrelated phenomena: reproductive senescence,
defined on the basis of ‘‘reduced reproductive performance,’’
and menopause, defined as ‘‘species typical patterns of
reproductive senescence that significantly exceed the general
aging trajectory and result in a postreproductive life stage’’
[74], thus emphasizing the timing of menopause in the life span
as a defining feature, rather than the physiological changes that
characterize menopause itself. This somewhat unorthodox
definition allows the researchers to suggest that menopause is
a singularly human phenomenon.

All of these studies provide important information on
reproductive aging in chimpanzees, but the use of different
criteria and dependent variables leaves the question open: do
chimpanzees experience menopause, and if so, when? If one
adopts the view that reproductive aging is a process and not a
singular event, then perhaps the apparently discrepant findings
from chimpanzees can be understood more clearly. Falling
birth rates [81, 102], follicular depletion [81, 82], and increased
anovulatory cycles [71] certainly bespeak a system in decline.
With a more comprehensive approach to characterizing
reproductive senescence in chimpanzees, one might be
convinced that their reproductive system is indeed undergoing

TABLE 2. Criterion-based operational definitions and dependent vari-
ables used to establish the existence of menopause.

Dependent variable Reference no.

Reduced fertility [78–80]
Reduced follicle number [10, 81–85]
Cessation of live births [78, 79, 86, 87]
Irregular cycles [12, 49, 51, 65, 88]
Increased cycle length [47–49, 56]
Species-typical patterns of reproductive

senescence . general aging trajectory
resulting in post-reproductive life stage

[74]

Age at last live birth [74]
Interbirth interval (IBI) [53, 78, 87, 89, 90]
Time lag between last parturition & death

(.2 SD of mean life IBI)
[78, 91]

Cycles/year [48]
Decreased urinary estrone [41]
Decreased urinary pregnanediol-3-glucuonide [41, 61]
Decreased serum progesterone [66, 88, 92]
Decreased fecal progestogens [51, 93]
Cessation of menses [38, 40, 41, 47, 56,

79, 80, 94, 95]
Ovarian depletion [40, 82, 84]
Increased serum/urinary FSH [47, 65, 66, 88, 95–97]
Reduced fecundity [71, 86, 87, 90]
Decreased perineal turgescence [49, 56, 71]
Decreased primordial follicles [82, 83, 92, 97, 98]
Decreased serum/urinary estrogens [40, 66, 88, 95–97]
Increased serum/urinary LH [40, 47, 66, 88, 95]
Decreased IGF1 [99]
Decreased GH [99]
Paracallosal skin changes [90]
Vaginal health [94]
Decreased inhibin B [66]
Decreased antimullerian hormone [66]
Increased response to GnRH challenge [99]
Reversed FSH:LH ratio [47]
Increased ovarian fibrous tissue [10]
Duration of effective breeding [73]
Increased GnRH concentration and decreased/

unchanged pulsatile frequency
[2, 100]

Decreased follicular phase length [5, 62]
Decreased bone mass [12, 101]
Cessation of sexual behavior [79, 93]
Increased skeletal turnover [101]
More than two successive years without a birth [96]
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changes that parallel those seen in humans. Rather than
dismissing chimpanzees as ‘‘poorly suited’’ [37] models for
human menopause, or concluding that chimpanzees fail to
exhibit menopause altogether [74, 78, 103], it may be more
advantageous to refine and focus our definition of menopause
in order to deepen our understanding of age-related changes in
reproductive function.

Table 2 depicts many useful criteria for establishing the
presence of menopause, although most are by no means
definitive. For example, cycle irregularity could foretell the
onset of menopause, but it could also result from social,
pathologic, or environmental factors that influence the
reproductive system independent of aging. The same could
be said for hormonal correlates of menopause (e.g., growth
hormone [GH], inhibin, insulinlike growth factor 1, etc.),
because these endocrine indices may describe a correlate of the
menopausal state without providing irrefutable documentation
of menopause per se. What is evident from Table 2 is that many
criteria are available for examining menopause, and some have
more merit than others.

ACROSS-SPECIES COMPARISONS
OF MENOPAUSAL SIGNS

With the rapid expansion of the aged human population,
interest in the mechanisms underlying reproductive senescence
has grown rapidly, along with a concomitant evolution in
opinion regarding menopause in nonhuman primates. Origi-
nally, menopause was considered to be a uniquely human
phenomenon, as there was little scientific support for the
existence of menopause in other primates [24, 104]. However,
as record keeping and research tools improved, evidence began
to mount that menopause does, in fact, occur in a number of
nonhuman primate species (see below), and that these animals
can be useful for expanding our understanding of the
mechanisms underlying menopause in humans.

Great Apes

Chimpanzees (Pan spp.). Some of the earliest work on
reproductive senescence in the great apes was that of Gould
and colleagues [47] in three chimpanzees (two P. troglodytes
[48 and 50 yr] and one P. paniscus [.40 yr]). This study
reported similar menopausal signs in chimpanzees and in
humans, particularly with regard to gonadotropin levels,
FSH:LH ratios, and ovarian histology. In more recent work
on a larger number of subjects, Lacreuse and colleagues [48]
showed that many aged chimpanzees (P. troglodytes) continue
to menstruate into their 50s. These workers also reported that
cycle length in female chimpanzees increased from the age of
20 yr onward. Increasing cycle length with age has also been
noted by Videan et al. [49], who supplemented this observation
with hormonal data from biannual samples. They concluded
that menopause occurs in this species at approximately 35–40
yr of age, a finding that concurs with data from wild
chimpanzees in which 28% were found to cease cycling after
the age of 30 [71].

Another analysis of chimpanzees in the wild, however,
found that healthy chimpanzees remain reproductively viable
well past the age of 40 yr [74]. The authors suggest that
menopause occurs as a byproduct of ill health in this
population. This conclusion was drawn from observations of
a truncated (i.e., mortality-selected) distribution of wild
chimpanzees, as the rate of survivability to 40 yr of age was
only 7%. It should not be surprising that females who survive
in the wild (or even in captivity) to advanced age are
reproductively robust. Perhaps long-lived animals represent

extraordinary females who manifest behavioral and constitu-
tional traits that enhance health and survivability. In such
females, a continuation of reproductive function, albeit at a
diminished level, might simply be considered a marker for
overall good health. This observation does not necessarily
undermine the contention that female chimpanzees undergo
menopause, but rather suggests that the onset of menopause
may simply be delayed in relatively healthy, long-lived
animals. In fact, chimpanzees show a number of other
similarities to humans in terms of reproductive aging; both
species show an increase in fetal loss as a function of
advancing age [102, 105, 106], and the age-related depletion of
ovarian follicles follows a remarkably similar trajectory in
chimpanzees and humans [82]. Although some specifics
regarding the precise timing of menopause-associated events
remain uncertain, it seems clear that reproductive aging is
remarkably similar in female chimpanzees and humans.

Orangutans (Pongo spp.). Data on menopause from other
great apes are much scarcer. Early reports from captive
orangutans documented the endocrine characteristics of the
menstrual cycle and illustrated similarities to the human cycle
[107]. However, this work did not extend to an evaluation of
aged females. An analysis of archival data examining live
births and interbirth intervals across the life span showed a
significant age-specific decline in fertility in captive orangutans
(Pongo pygmaeus) [78]. Research on wild Sumatran orangu-
tans (Pongo abelii) failed to document menopause, as inferred
from increased interbirth intervals in animals whose ages were
estimated [53]. However, data from wild animals are difficult
to interpret because of countervailing factors, such as female
rank, infant mortality, uncertain age, and ecological issues such
as food availability. Rather than assuming that this species
represents a ‘‘decoupling of reproductive and somatic aging’’
[69], it may be more pragmatic to focus on improving
measurement techniques and methodologies used to assess
menopause in the wild.

Gorillas (Gorilla gorilla). Relatively little is known about
reproductive senescence in female gorillas (Gorilla gorilla).
Early work described the reproductive physiology of this
species, correlating perineal tumescence with circulating
hormones and reporting a pattern of cyclic hormone secretion
similar to that in humans [108]. Cycle length (28–38 days) and
urinary FSH levels also have been established in gorillas [109],
with the authors concluding that this species provides a suitable
model for human reproduction. More recently, fecal hormone
determinations in two captive female gorillas (.40 yr old)
revealed protracted luteal phases (as indicated by progestogen
peaks and cyclic irregularities) typical of aging human females
[51, 93]. An age-related decline in fertility was reported in wild
mountain gorillas from the Virunga Volcano area in central
Africa, although no evidence of a period of protracted
postreproductivity in these females was found [89]. The
paucity of data on gorillas and other great apes underscores
the need for further research on reproductive senescence in this
group of closely related species.

Baboons (Papio spp.). Baboons have been studied
extensively with regard to reproductive physiology because
they are similar to humans in both menstrual cycle character-
istics [56, 110, 111] and pregnancy [112–114]. Data regarding
the occurrence of menopause in baboons (Papio spp.), however,
are relatively meager. Based on menstrual cycle length (inferred
from perineal turgescence), increased cyclic variation begins at
approximately 19 yr of age, whereas total cessation of cycling
occurs at ;26 yr in captive baboons [56]. This finding supports
an earlier report of menopause occurring in the mid-20s in this
species [115]. Data from a wild troop of baboons confirm this
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conclusion, as inferred from age-related reductions in fecundity
and increases in interbirth intervals [90]. Additional studies of
wild baboons have reported increased cyclic variability with age
and a complete loss of fertility by the age of 25 yr [116]. Thus,
there is reasonably compelling evidence that baboons undergo
age-linked alterations in reproductive function that are similar to
those in humans.

Macaques

Rhesus monkeys (Macaca mulatta). Reproductive senes-
cence has been more thoroughly characterized in rhesus
monkeys (Macaca mulatta) than in any other species of
nonhuman primate. An early study of two captive rhesus
monkeys found evidence of menopause, based on menstrual
bleeding, in females older than 25 yr of age [38, 39]. Hodgen et
al. [88] extended this observation with supporting endocrine
data. They reported that a subset of animals older than 22 yr
exhibited elevated gonadotropin concentrations and basal
progesterone (P

4
) and E

2
concentrations characteristic of

human menopause. However, these original studies are
difficult to interpret, because rhesus monkeys breed seasonally,
and in controlled laboratory environments they exhibit natural
anovulatory cycles that could be mistaken for menopause
[117–120]. Furthermore, in a laboratory environment during
the summer months, ovulatory cycles with abnormal luteal
phases can occur [121, 122]. Summer corresponds to the
nonbreeding season in outdoor-housed animals that are
exposed to seasonal variations in daylight [123–127]. Because
of seasonal variations in endocrine and menstrual parameters, it
can be difficult to distinguish seasonal acyclicity and
amenorrhea from reproductive senescence in captive females.
This concern was addressed in two studies [40, 41] that
documented menopause in female rhesus monkeys. Based on
menstrual bleeding and serum E

2
and LH levels analyzed over

a 12-mo period, as well as ovarian histology, Walker [40]
found evidence for menopause in six females ranging from 26
to 34 yr of age. This finding was corroborated by Gilardi et al.
[41] in a group of 20- to 29-yr-old females using menstrual
data and urinary steroid hormone levels. In this study, 13
animals with a mean age of 24 yr were considered to be
perimenopausal, and two animals with a mean age of 29.5 yr
were fully menopausal [37]. Shideler et al. [65] also examined
the interaction of seasonality and aging by focusing on
endocrine parameters. They confirmed earlier findings regard-
ing the approximate age range for menopause, and reported a
monotonic pattern of FSH secretion in these females. In
addition, the anovulatory cycles characteristic of the nonbreed-
ing season were found to immediately presage the onset of
menopause. These observations were supported recently by
Downs and Urbanski [66], who found that age-related changes
in plasma FSH levels forecast menopause (no episodes of
menses for �12 mo). Postmenopausal females showed
diminished levels of circulating E

2
and P

4
and elevated FSH

and LH. They further reported significant declines in anti-
Mullerian hormone and inhibin B in postmenopausal females
when compared to younger animals [66], indicating that these
endocrine parameters may reflect changes in ovarian dynamics
associated with menopause.

Few data from free-ranging rhesus monkeys exist. One
exception is a study of provisioned, free-ranging monkeys by
Johnson and Kapsalis that factored survivability into the
assessment of the likelihood of reaching menopause [79]. The
authors reported a median age of menopause .27 yr, but in a
manner similar to Emery Thompson et al. [74], they concluded
that reproductive senescence was highly correlated with

general overall health. Perhaps in wild female primates, age-
related declines in overall health may preclude the reliable
observation of true menopause in many animals.

Studies of the neuroendocrine axis also reveal changes
associated with somatic aging. Gore and colleagues [100]
examined four aged rhesus monkeys (age range, 26.9–30.6 yr)
that were implanted with intracranial push-pull cannulae for the
measurement of pulsatile GnRH concentrations. The research-
ers found that aged animals continue to secrete GnRH in a
pulsatile fashion, although absolute levels of this hormone are
higher than in younger females. Similarly, whereas circulating
levels of GH and GH pulse amplitude decline with age in
monkeys, pituitary responsiveness to GHRH and GHRP-2
(GH-releasing peptide 2) is similar in young and aged monkeys
[99]. Pulsatile LH release, however, is significantly higher in
aged females, as is pulse amplitude [99]. These studies support
the view that neuroendocrine changes in senescent monkeys
are consistent with those found in humans [128–131].

Ovarian changes underlying menopause in rhesus females
also have been characterized [40, 84, 97]. For example,
gonadotropin stimulation produces significantly fewer oocytes
in older (age range, 16–26 yr) rhesus monkeys, a finding
reported earlier in humans [132]. When evaluated over much of
the life span (from ages 1 to 25 yr), ovarian morphology
changes substantially, with increasing evidence of atretic
follicles and fewer primordial follicles in aged animals [84].
These studies indicate that rhesus monkeys undergo ovarian
changes as a function of aging that are similar to those seen in
humans [133, 134] and chimpanzees [82].

Pigtail macaques (Macaca nemestrina). Few data exist
describing the relationship between aging and reproduction in
pigtail macaques (Macaca nemestrina). Two studies of ovarian
changes concur that there is a decline in folliculogenesis with
age. Graham et al. [81] examined ovaries from this species and
reported a reduction in developing follicles after the age of 20
yr, and Miller et al. [83] extended this work by reporting a
bilateral, linear decrease in primordial follicles up to the age of
12.5 yr (the oldest age analyzed). Observations from archival
data show an age-associated decline in fertility, and in one
group, 26% of the females ceased reproductive activity prior to
death [78]. Whereas no endocrine data are available to clarify
the mechanisms underlying these changes, it seems evident that
pigtail macaques undergo a process of reproductive senescence
consistent with menopause.

Japanese macaques (Macaca fuscata). Both captive and
free-ranging Japanese macaques (Macaca fuscata) experience
reproductive decline and a period of infertility prior to death as
well. Studies of free-ranging animals indicate that fertility rates
diminish with age, and that by the age of 25 yr, females cease
to reproduce [135–137]. Some captive females have been
found to maintain normal menstrual cycles (based on periodic
menses) despite loss of fertility [98], a finding similar to that in
humans [138]. This decline in fertility may result from a
suboptimal uterine or hormonal environment, fetal chromo-
somal abnormalities, or simply less sexual behavior. Lutein-
izing hormone levels are higher in aged females [98], and an E

2
challenge elicits an LH surge, suggesting that this neuroendo-
crine mechanism is intact, as is the case in humans [139]. The
ovaries of aged Macaca fuscata also show evidence of decline,
as judged by increased sclerosis and abnormal follicles [98].
Although Pavelka and Fedigan [91] concluded that reproduc-
tive termination in Japanese macaques does not model human
menopause, they used a nonclinical definition for the cessation
of reproduction based on a strict classification using the time
lag between last parturition and death. They conclude that
‘‘reproductive termination’’ is a certainty by the age of 25 yr in
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Japanese macaques, but are reluctant to call this ‘‘menopause’’
because of its timing in the life span of the animal. As
discussed above, this concern begs the issue by focusing on the
timing of the event within the life span rather than the
underlying physiological process of menopause per se. The key
point is that the similarities in reproductive senescence in
humans and Japanese macaques greatly exceed the differences.

Barbary macaques (Macaca sylvanus). Data from the
Barbary macaque (Macaca sylvanus), though sparse, parallel
those from other macaque species. Paul et al. [87] reported an
age-related decline in fertility and an increase in interbirth
interval, concluding that reproduction in Macaca sylvanus
terminates at appropriately 25 yr of age. The authors indicate
that a postreproductive period of greater than 5 yr is not
uncommon in the Barbary macaque.

Other macaques (Macaca spp.). Studies from other
species of the genus Macaca generally confirm that senescent
macaque females experience a period of waning fertility and
cessation of ovulation characteristic of menopause. As
summarized in Paul et al. [87], despite individual variability,
the postreproductive life span of macaque females can range up
to 8 yr. These authors cite the observations of reduced fertility
in crab-eating macaques (Macaca fascicularis [140]), bonnet
macaques (Macaca radiata [141]), and toque macaques
(Macaca sinica [142]). A recent analysis of Macaca fascicu-
laris [96] substantiated earlier observations in this species by
demonstrating a postmenopausal neuroendocrine pattern sim-
ilar to that in humans (elevated FSH and androgens, diminished
estrogens).

Tamarins (Saguinus spp.)

Little research has examined aging and reproduction in New
World primates. Two subspecies of tamarins (Saguinus
oedipus and S. fuscicollis) were found to experience reduced
fertility at approximately 17 yr of age, based on plasma and
urinary hormone measurements [92]. However, ovarian
histology of older females suggests that large luteal masses
continue to process steroids, despite the absence of normal
folliculogenesis. This phenomenon would distinguish these
animals from Old World primates and humans, although
further research on reproductive senescence in New World
primates is clearly needed.

CONCLUSIONS

Menopause is a naturally occurring process in which the
permanent cessation of ovulation is associated with a variety of
physiological and structural changes in aging female primates.
One obstacle to the acceptance of nonhuman primates as
models of human menopause has been the tendency to focus on
differences rather than commonalities. For example, it is
apparent that the onset of reproductive decline occurs relatively
later in the life span of nonhuman primates than of humans,
resulting in a more protracted postreproductive period in
humans [33, 143, 144]. Although postreproductive survival is
important from an evolutionary standpoint, menopause is
fundamentally a physiological process, and a gradual decline
and eventual cessation of female reproductive capacity, based
on a host of criteria, appears to be a consistent feature of aging
in every primate species that has been examined.

We draw the following conclusions:

1. The multitude of definitions for menopause has contributed
to a general confusion about its occurrence among non-
human primate species. A uniform definition would

facilitate our understanding of the way in which menopause
reflects species-specific patterns of reproductive senescence.

2. We define menopause in primates as the permanent,
nonpathlogic, age-associated cessation of ovulation. Meno-
pause is associated with concomitant structural and
functional changes, including (in species that exhibit
menstrual bleeding) the termination of menstruation.

3. Whereas humans have a uniquely extended postmenopausal
life expectancy, other primate species do experience a
postreproductive period. The length of this period is not
necessarily related to the existence of menopause per se.

4. Many of the apparent discrepancies in reports regarding the
occurrence of menopause in nonhuman primates may be
accounted for by environmental and social factors that
distinguish captive versus wild animals, and by a paucity of
data from sufficiently powered studies.

5. By almost any generally accepted definition, several species
of nonhuman primates experience menopause.
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